Mixed Palladium(III)–Nickel(II) and Palladium(II)–Copper(II) Complex Salts with Biuret and the N_4 -Macrocycle Cyclam[†]

Nelly Mincheva,^a Dimitar Mehanjiev^b and Mariana Mitewa^{*a}

^aDepartment of Chemistry, University of Sofia 1, J. Bourchier av. 1126 Sofia, Bulgaria ^bInstitute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

Three paramagnetic mixed salts of palladium(III) and palladium(II) complexes with biuret and $Cu(cyclam)^{2+}$ or $Ni(cyclam)^{2+}$ are obtained and their magnetic properties studied.

Recently we succeeded in obtaining a new anionic paramagnetic palladium(III)–biuret (BiuH₂) complex $\{[Pd^{III}(Biu)_2]^-\}$ which is precipitated with $NH_4^{+,1}$

On the other hand it is well documented that some combinations of charged metal complex species are capable of forming metal chains which exhibit interesting magnetic properties.² We thus tried to obtain mixed complex species reacting $[Pd^{III}(Biu)_2]^-$ with $Cu(cyclam)^{2+}$ and $Ni(cyclam)^{2+}$.

The results obtained for the newly synthesized compounds are reported in the present paper.

Experimental

Synthesis of the Complexes— $NH_4[Pd(Biu)_2]$, $[Cu(cyclam)][ClO_4]_2$ and $[Ni(cyclam)]Cl_2$ were synthesized according to known procedures. ^{1,3,4}

The mixed complex salts $[Pd(BiuH_2)][Ni(cyclam)]Cl_5 1$ and $[Pd(BiuH_2)][Cu(cyclam)]Cl_4 2$ were obtained by dissolving 40 mg NH₄[Pd(Biu)₂] in 25 ml of 3×10^{-2} M HCl (pH ≈ 1.5) with immediate addition of 5 ml of 1×10^{-2} M [M(cyclam)]²⁺ aqueous solution, resulting in spontaneous precipitation of the salts formed.

The salt $[\hat{Pd}(Biu)_2]_2[Ni(cyclam)] \cdot SH_2O$ **3** was obtained by mixing aqueous solutions of $[NH_4]_2PdCl_4$ (6 ml, 5×10^{-2} M) and biuret (20 ml, 2.3×10^{-1} M) in molar ratio 1:15 and successive addition of a Ni(cyclam)Cl₂ aqueous solution (7 ml, 2×10^{-2} M) (Pd:Ni = 2:1). After adjusting the acidity of the reaction mixture (KOH solution) to pH 4.8–5.0 a yellow precipitate was formed.

The residues were filtered off, washed repeatedly with distilled water and dried over P_4O_{10} for 2 weeks.

The Ni and Cu content was determined by atomic absorption analysis (AAA) and Pd content was determined gravimetrically after treatment with conc. H_2SO_4 and following calcination at 800 °C to constant weight.

Physical Measurements—The IR spectra were recorded on a Specord IR-75 instrument (Carl-Zeiss, Jena) (Nujol muls) and EPR spectra on an X-band EPR spectrometer (Bruker B-ER 420) (temperature range 130–300 K). Magnetic susceptibility measurements were performed using the Faraday method in the temperature range 160–300 K. The thermogravimetric data were obtained on a Perkin-Elmer TGS-2 instrument and AAA was performed using a Perkin-Elmer 1100 B spectrometer.

Results and Discussion

The analytical data obtained (Table 1) show good reproducibility from batch to batch. The presence of water molecules in complex **3** is proven also by TG measurements. In the temperature range 40-170 °C a mass loss of 9.2% was registered, the theoretical value being 9.3%.

The IR data show the presence of both biuret and cyclam in the mixed complexes 1–3 (Table 2). In their IR spectra both $\nu_{C=O}$ and $\nu_{=NH}$ bands of biuret are present together with bands in the range 1100–1000 cm⁻¹, typical for cyclam skeletal vibrations. It should be noted also that the ν_{NH} vibrations of the cyclam molecules in the mixed complex salts are affected significantly: they are shifted from 3240 cm⁻¹ (Cu–cyclam) and 3220, 3150 cm⁻¹ (Ni–cyclam) to 3185 and 3140 cm⁻¹. The $\nu_{C=O}$ band of **3** is also shifted to lower frequency compared with that of NH₄[Pd(Biu)₂]. All these data indicate additional interactions of C=O and NH groups in the molecules of the mixed complex salts 1–3, most likely due to hydrogen-bonding.

All three complexes are paramagnetic and their effective magnetic moment (μ_{eff}) values were determined[‡] at ambient temperature (293 K) (Table 3). It is evident that most likely in complex **2** the diamagnetic palladium(II) ion (square-planar coordination) is present, since the μ_{eff} value of 1.96 μ_{B} is typical for square-planar copper(II) complexes.⁵

Table 1Analytical data (%)^a for the complexes

Complex	С	Н	Ν	CI	Ni or Cu	Pd
$[Pd(BiuH_2)][Ni(cyclam)]Cl_5$ 1	22.2 (22.4)	4.3 (4.5)	15.0 (15.3)	27.3 (27.2)	9.2 (9.0)	16.5 (16.5)
$[Pd(Biu)_2]_2[Ni(cyclam)] \cdot 5H_2O$ 3	23.1 (23.4) 22.5 (22.4)	4.4 (4.7) 4.9 (4.8)	23.7 (23.2)		6.5 (6.1)	22.3 (22.0)

^aThe results coincide within experimental error (±0.3%) for samples from three different batches; calculated values in parentheses.

*To receive any correspondence (*e-mail:* mmitewa@chem.uni-sofia.bg).

†This is a **Short Paper** as defined in the Instructions for Authors, Section 5.0 [see *J. Chem. Research* (*S*), 1998, Issue 1]; there is therefore no corresponding material in *J. Chem. Research* (*M*).

‡Calculated according the relation $\mu_{\rm eff} = 2.828 \sqrt{\chi_{\rm m} T}$ with corresponding diamagnetic corrections made.

For the other two complex salts the presence of Pd³⁺ ions might be assumed, taking into account that square-planar Ni(cyclam)²⁺ complexes are diamagnetic. For the monomeric complex 1 the experimental μ_{eff} value of 1.68 μ_B is very close to the theoretical one (1.73 μ_B), while for the Pd³⁺–Pd³⁺ species 3, μ_{eff} of 2.50 μ_B is coincident with the

J. Chem. Research (S), 1998, 434–435[†]

 Table 2
 Selected IR data for the complexes

Complex	^v он	ν _{=−NH}	^𝒴 NHcyclam	ν _{C==0}	$\nu_{\rm CN} + \delta_{\rm CNH}$
NH ₄ [Pd(Biu) ₂] [Cu(cyclam][ClO ₄] ₂ [Ni(cyclam)]Cl ₂ 1 2 3	 ~ ≈3480	3320 — 3320 3320 3310		1740 1740 1740 1740w, 1680	

^aOverlapping with $v_{CIO_4^-}$ (1150–1050 cm⁻¹).

 Table 3
 Molar magnetic susceptibility and magnetic moment for the three complexes at 298 K

Complex	χm	$\mu_{\rm eff}/\mu_{\rm B}$
1	1.19×10^{-3}	1.68
2 3	1.62×10^{-3} 2.63 × 10^{-3}	1.96 2.50

expected value (2.45 μ_B). For the latter the dependence of μ_{eff} with temperature was followed (Fig. 1) and the data obtained show a significant increase of magnetic moment

Fig. 1 Temperature dependence of the magnetic moment (curve 1) and the molar magnetic susceptibility (curve 2) for complex 3

with temperature, typical for antiferromagnetic exchange between the two Pd^{3+} ions.

Additional evidence for the +3 oxidation state of palladium ion was obtained for 3 according to EPR spectroscopy. The complex exhibits a broad EPR signal (≈ 50 G) with a *g*-value of 2.2 which is typical for low-spin palladium(III) species.¹

On the basis of these data the following structures are proposed:

Received, 26th January 1998; Accepted, 21st April 1998 Paper E/8/00669E

References

- N. Mincheva, G. Gencheva, M. Mitewa, G. Gochev and D. Mehandjiev, Synth. React. Inorg. Met.-Org. Chem., 1997, 27, 1191.
- 2 P. I. Clemenson, Coord. Chem. Rev., 1990, 106, 171.
- 3 B. Jezowska-Trzebiatowska, R. Kolinski, B. Krybut-Daszkiewicz, J. Mrozinski and W. Wojciechowski, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 1969, 17, 411; Chem. Abstr., 1970, 72, 26087v.
- 4 B. Bosnich, M. L. Tobe and G. A. Webb, *Inorg. Chem.*, 1965, 4, 1109.
- 5 B. N. Figgis and J. Lewis, Prog. Inorg. Chem., 1964, 6, 37.